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a b s t r a c t

We present a numerical method to solve the linear stability of impulsively accelerated den-
sity interfaces in two dimensions such as those arising in the Richtmyer–Meshkov instabil-
ity. The method uses an Eulerian approach, and is based on an upwind method to compute
the temporally evolving base state and a flux vector splitting method for the perturbations.
The method is applicable to either gas dynamics or magnetohydrodynamics. Numerical
examples are presented for cases in which a hydrodynamic shock interacts with a single
or double density interface, and a doubly shocked single density interface. Convergence
tests show that the method is spatially second-order accurate for smooth flows, and
between first and second-order accurate for flows with shocks.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The Richtmyer–Meshkov (RM) instability is the subject of extensive experimental, theoretical and computational re-
search because of its importance in technological applications such as inertial confinement fusion, as well as astrophysical
phenomena such as supernovae collapse. A linear stability analysis was performed originally by Richtmyer [1], followed by
experimental confirmation by Meshkov [2]. Richtmyer analyzed the interaction of a shock wave with a perturbed contact
discontinuity separating gases of different densities and concluded that the perturbations on the contact discontinuity grew
linearly with time. The linear analysis was further developed by Yang et al. [3] in which they also considered the case when
the reflected wave is a rarefaction. Computing the linear response for both the reflected shock and reflected rarefaction cases
requires special consideration for each case, and a different set of equations must be solved. Such simulations exploit the fact
that the base state is a self-similarly evolving solution with a finite number of waves (a transmitted shock, a contact discon-
tinuity, and either a reflected shock or a reflected rarefaction). The reflected and transmitted waves usually bound the com-
putational domain for computing the linear quantities [3]. Analytical extensions of the linear stability analysis when the base
state is more complicated than the one considered by Richtmyer and Yang et al. have not been performed.

Hawley and Zabusky [4] provided a vortex dynamics interpretation to the RM instability. The density interface in gas
dynamics is the site of baroclinically generated vorticity which is the essential driving mechanism of the instability. We will
. All rights reserved.
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appeal to such an interpretation in discussing results from our numerical simulations. Recently, Samtaney [5] has shown that
the RM instability is suppressed by the presence of a magnetic field, which was also confirmed analytically by Wheatley et al.
[6]. The magnetohydrodynamics (MHD) RM instability includes nonlinear MHD waves such as a slow-mode shock [5,7]. In
addition to the classical one hydrodynamic shock interacting with one sharp density interface, there have been the other gas
dynamics configurations such as the Air-SF6 gas curtain experiments [8,9]. Furthermore, there are situations where the den-
sity interface may not be sharp, i.e., there is a finite density gradient in moving from one fluid to another for which comput-
ing the linear stability may be desired. Extending the classical linear stability analysis to computing linear stability in the
context of MHD, the gas curtain type configurations, or diffuse interfaces, is daunting. One way to compute these flows,
at considerable computational expense, is to simulate the nonlinear equations in two dimensions with a small amplitude
perturbation. An alternative possibility is to numerically compute the linear response by simulating the linearized equations.
A generalized numerical approach for hyperbolic conservation laws was developed by Godlewski and Raviart [10] in which
they formulate the approach in terms of finding measure solutions of the linearized equations, and proved, for a scalar con-
servation law, that the measure solution is recoverable as the limit of solutions of regularized linear systems in which the
discontinuity of the basic solution has been smoothed out. Our approach is to simulate the system of linearized PDEs using
an Eulerian approach with the regularization that the contact discontinuity and shocks are numerically smoothed out. The
objective of this paper is precisely to develop an Eulerian numerical method to compute the linear stability of accelerated
density interfaces which can be generally applicable to situations other than the classical one considered by Richtmyer.
The outline of the paper is as follows: in Section 2 we present the equations of MHD in 2D, followed by the linearized system.
It should be noted that the base state of the instability is time dependent and governed by a one-dimensional nonlinear
system of hyperbolic PDEs. In Section 3, we present a numerical method to solve such a system. This is followed by numerical
examples and convergence tests in Section 4, and a brief conclusion and recommendations for future work in Section 5.

2. Equations for the base state and perturbations

We begin by writing the equations of compressible MHD in conservative form in two dimensions as follows.
@U
@t
þ @FðUÞ

@x
þ @GðUÞ

@y
¼ 0; ð1Þ
where the solution vector U � Uðx; y; tÞ is,
U ¼ fq;qu;qv ;qw; Bx;By;Bz; egT
; ð2Þ
where q is the density, ðqu;qv ;qwÞ represents the momentum, ðBx;By;BzÞ is the magnetic field, and e is the total energy per
unit volume. The vectors FðUÞ and GðUÞ are the fluxes of mass, momentum, magnetic field and total energy in the x, and y
directions, respectively, and are given by
FðUÞ ¼

qu

qu2 þ pt � B2
x

quv � BxBy

quw� BxBz

0
uBy � vBx

uBz �wBz

ðeþ ptÞu� ðB � uÞBx

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
; GðUÞ ¼

qv
quv � BxBy

qv2 þ pt � B2
y

qvw� ByBz

vBx � uBy

0
vBz �wBy

ðeþ ptÞv � ðB � uÞBy

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

; ð3Þ
where pt denotes the sum of the gas pressure and the magnetic pressure. The equations are closed by the following equation
of state e ¼ p

c�1þ
q
2 ukuk þ 1

2 BkBk. The ratio of specific heats is denoted by c and taken to be 5/3 through out this work.
Writing the solution as Uðx; y; tÞ ¼ U0ðx; tÞ þ �bUðx; tÞ expðikyÞ, where U0ðx; tÞ is a one-dimensional temporally evolving

base state, and bUðx; tÞ expðikyÞ is the perturbation. Substituting these back into Eq. (1) we get the nonlinear system of hyper-
bolic PDEs in 1D governing the evolution of the base state,
@U0

@t
þ @FðU0Þ

@x
¼ 0: ð4Þ
The perturbations are governed by the system of coupled linear wave equations written as
@ bU
@t
þ @AðU0ÞbU

@x
¼ �ikSðU0ÞbU ; ð5Þ
where the wave speeds are given by the eigenvalues of AðU0Þ, the Jacobian of the FðU0Þwith respect to U0, and where SðU0Þ is
the Jacobian of GðU0Þ with respect to U0.

A consequence of Faraday’s law is that an initially divergence free magnetic field leads to a divergence free magnetic field
for all times corresponding to the lack of observations of magnetic monopoles in nature. This solenoidal property is ex-
pressed as r � B ¼ 0. The base state magnetic field is also required to be divergence free, and because this magnetic field
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is only a function of x, a direct consequence is that the x-component of the magnetic field B0
x is constant. The perturbed field

has to satisfy
@cBx

@x
þ ikcBy ¼ 0: ð6Þ
3. Numerical method

We adopt the method of lines approach in which each system [Eqs. (4) and (5)] is written as
@U
@t
¼ RðUÞ; ð7Þ
and employ either a second-order or a third-order TVD Runge–Kutta approach. The third-order TVD RK approach is outlined
below (where n indicates the time step index):
U0 ¼ Un;

U1 ¼ U0 þ DtRðU0Þ;

U2 ¼
3
4

U0 þ
1
4

U1 þ
Dt
4

RðU1Þ;

U3 ¼
1
3

U0 þ
2
3

U2 þ
2Dt

3
RðU2Þ;

Unþ1 ¼ U3: ð8Þ

We adopt an upwind approach to solve the system of equations governing the evolution of the base flow (Eq. (4)) and the
perturbations (Eq. (5)). This upwind method presented below works in general for the MHD system for non-zero values of B0;
and for gas dynamics by setting B0 ¼ 0. We use a finite volume approach in which the one-dimensional domain ½xl; xr� is
divided into finite volumes of size Dx each, indexed by i, and bound by faces at iþ 1

2 and i� 1
2. The solution vectors (U0

and bU) are centered at the centroid of the finite volume. As discussed above, the divergence free condition implies that
the one-dimensional base state variable B0

x is constant. Thus, the number of equations for the base state actually decrease
by one. We define another set of solution vectors U0 and eU which are defined as U0 and bU but without the x-component
of the magnetic field in each. The evolution of the x-component of the perturbed magnetic field, cBx , is treated separately.

We also define a flux vector FðUÞ which is the same as FðUÞ but without the flux of the x-component of the base state
which is zero. The flux derivative for the base state are numerically evaluated as:
@FðU0Þ
@x

�����
i

¼
FðU0Þiþ1

2
� FðU0Þi�1

2

Dx
; ð9Þ
where the flux FðU0Þiþ1
2
� FðU0; B0

xÞ � FðU0
L;iþ1

2
;U0

R;iþ1
2
;B0

xÞ, is obtained by
FðU0Þiþ1
2
¼ 1

2
FðU0

L;iþ1
2
;B0

xÞ þ FðU0
R;iþ1

2
;B0

xÞ
� �

� 1
2

X7

k¼1

akrk; ð10Þ
where ak ¼ lk � U0
R;iþ1

2
� U0

L;iþ1
2

� �
. lk and rk are left and right eigenvectors of matrix A which is the same as AðU0Þ excluding the

row and column corresponding to B0
x . U0

R;iþ1
2

and U0
L;iþ1

2
are left and right states obtained at the faces of the finite volumes by

fitting linear profiles and van-Leer slope limiting.
The perturbed quantities, denoted as bU above, are computed using the same method of lines approach. The right-hand

side for evolving eU consists of three terms:
@ eU
@t
¼ RðeUÞ ¼ � @AðU0ÞeU

@x
� ikSðU0ÞeU þ CðU0;cBxÞ; ð11Þ
where S is S without the row/column corresponding to B0
x , and C is a correction term described below. bBx is evolved using
@cBx

@t
¼ ik

ðv0B0
x � u0B0

yÞ
q0 q̂þ

B0
y

q0
cqu � B0

x

q0
cqv � v0cBx þ u0cBy

 !
: ð12Þ
We compute the flux AðU0ÞbU jiþ1
2

by a seven-wave method for which we replace the matrix AðU0Þ with A. The seven-waves
correspond to the seven eigenvalues of A which are: fu0;u0 � cf ;u0 � ca;u0 � csg where the u0 is the advection speed, and
cf ; ca; cs correspond to the fast magnetosonic, Alfvén, and slow magnetosonic speeds, respectively. In our unified approach,
when computing the gas dynamics cases (i.e., B0

x ¼ 0), the fast and slow magnetosonic speeds smoothly reduce to the usual
acoustic wave speed, and the Alfvén speed goes to zero. The flux term AeU is computed using a flux–vector splitting approach,
in which A ¼ Aþ þ A�, where Aþ (respectively, A�) is computed using the positive (respectively, negative) eigenvalues of A.
The divergence of the flux of perturbed quantities is
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@AðU0ÞeU
@x

�����
i

¼
AðU0ÞeU jiþ1

2
� AðU0ÞeU ji�1

2

Dx
; ð13Þ

AðU0ÞeU jiþ1
2
¼ 1

2
Aiþ1

2

eUL;iþ1
2
þ Aiþ1

2

eUR;iþ1
2

� �
� 1

2
jAjiþ1

2

eUR;iþ1
2
� eUL;iþ1

2

� �
; ð14Þ
where jAj ¼ Aþ � A�. Also, in the above equation, eUL;iþ1
2

and eUL;iþ1
2

are, respectively, the left and right perturbed states at the
interfaces of the finite volumes. These left/right perturbed states are obtained by fitting linear profiles and van-Leer slope
limiting. The slope-fitting and limiting is performed on perturbed characteristic variables obtained by multiplying eU by lk,
the left eigenvectors of the matrix A, and then projecting these back to physical space by multiplying the slopes in charac-
teristic space by rk, the right eigenvectors of the matrix A. This process of fitting linear profiles was empirically determined to
perform well and give smooth solutions, whereas the simpler process of fitting linear profiles directly to eU suffered from
small-amplitude oscillatory, albeit benign, behavior for certain numerical cases.

In the method to determine fluxes of eU , because we have used the seven-wave formulation, we still need to take into
account the effect of cBx on the other variables. This is similar to the so-called ‘‘Stone correction” as suggested in the context
of multi-dimensional MHD by Gardiner and Stone [11] and also used by Crockett et al. [12]. This correction term, denoted by
CðU0;cBxÞ in Eq. (11), is
CðU0;cBxÞ ¼ f0; cB0
x ; B

0
y ; B

0
z ; v

0;w0; ðcB0
x u0 þ B0

yv
0 þ B0

z w0ÞgT @cBx

@x
: ð15Þ
In particular, for B0
y ¼ B0

z ¼ v0 ¼ w0 ¼ 0, as used in the numerical examples later, the correction term is non-zero only for the
x-momentum and the energy equations. These terms are evaluated using standard second-order central differences and
added to the right-hand side RðeUÞ in the time stepping procedure. Finally, during each stage of the time integration proce-
dure, the y-component of the perturbed magnetic field is replaced by
cBy ;i ¼
i
k

@cBx

@x

 !
i

� i
k

cBx ;iþ1 �cBx ;i�1

2Dx
; ð16Þ
where the derivative on the right is evaluated using second-order central differences. This step ensures that the solenoidal
property of the magnetic field is locally satisfied. If this step is omitted, the entire system of equations may be augmented by
a non-conservative source term suggested by Falle et al. [13] and Powell et al. [14] for numerical stability. If we have one
Dirichlet boundary condition on cBx , then an alternative approach to enforcing the solenoidal constraint, is to integrate cBy

as follows:
cBxðx; tÞ ¼ �ik
Z x

n¼xL

cByðn; tÞdnþ Bxðxl; tÞ; ð17Þ
if one Dirichlet boundary condition is imposed on cBx (assumed to be at the x ¼ xl boundary in the above equation). This inte-
gral approach may even be desirable because, in general, integration has a smoothing property and does not amplify numer-
ical errors. However, care must be exercised if both boundary conditions are of the Dirichlet type because it then introduces
an additional constraint that the integral form must result in the correct value on the other boundary.

In all results presented, we opted for the simpler method of enforcing the solenoidal constraint using the local correction
in each zone as given by Eq. (16).

4. Numerical results

The main objective of the paper is to compute the linear response in the context of Richtmyer–Meshkov (RM) flows in
which a hydrodynamic shock moves from a gas of one density into a gas of a different density. The interface between the
gases may be a sharp one (i.e., the classical RM case) or one in which the density transition is done with a finite prescribed
gradient. The interface needs to be perturbed with a single mode perturbation of wave number k. The numerical method
described above also allows us to compute the linear stability of more than one density interface (as in the Air-SF6 gas cur-
tain experiments), and also when the transmitted shock is allowed to reflect off an end wall and ‘‘reshock” the already
shocked interface. Furthermore, the above numerical prescription also allows us to include a magnetic field and compute
the linear stability of shocked density interfaces in MHD. For all cases considered in this section, the base state y- and z-com-
ponents of the magnetic field and momentum are zero. The boundary conditions for the both the base state and the per-
turbed quantities are zero gradient in x for all cases except the reshock case in which the normal component of the
velocity is reflected at the right boundary.

4.1. Single density interface

In this section, we consider the interaction of a hydrodynamic shock with a single density interface for both the gas dy-
namic and MHD cases. For results shown in this section, the domain is ½xl; xr� ¼ ½�20 : 20�, the shock is initialized at x ¼ �4
and moves from left to right, and the density interface is centered at x ¼ 0.
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Initial density perturbation: The classical RM instability has a sharp interface which implies that the density is a Heaviside
function as follows:
qðx; yÞ ¼ qb þ qa

2
þ qb � qa

2
Hðx� � expðikyÞÞ; ð18Þ
where qaðqbÞ is the unshocked density to the left (right) of the interface, and � is the perturbation amplitude. In our Eulerian
approach, we regularize the Heaviside density function as:
qðx; yÞ ¼ qb þ qa

2
þ qb � qa

p
arctan

x� � expðikyÞ
d

� �
; ð19Þ
where d is a measure of the smoothness applied to the sharp interface. Retaining only the linear term in a Taylor expansion in
� leads to the initial density profile of the base state as
q0ðxÞ ¼ qb þ qa

2
þ qb � qa

p
arctan

x
d

� �
ð20Þ
and the density perturbation q̂, ideally a delta function, which in our Eulerian approach, gets regularized as
q̂ðxÞ ¼ qa � qb

pd
1þ x2

d2

� ��1

: ð21Þ
In the results discussed here, the Mach number of the incident shock is varied M ¼ 1:05;1:25;2:0 which spans the shock
strength from weak to moderate to strong shocks. The densities are chosen to be qa ¼ 1 and qb ¼ 3, i.e. an Atwood ratio
of half. While we note that the Euler and ideal MHD equations are scale-free, in our computations, we fix the wave number
of the perturbation as k ¼ 2p which implies a perturbation wavelength of unity. The interface smoothing parameter d is cho-
sen to be 0.05–0.1. If the ratio d=ðxr � xlÞ � 1, then we expect that the effects of the regularization will be small. The char-
acteristic width d of the regularized density interface is typically four to eight mesh points for simulations utilizing 3200
mesh cells. For the gas dynamic case, B0

x ¼ 0 while for the MHD cases, the magnetic field is fixed such that the plasma beta
b ¼ 2p=B2

x ¼ 16.
Quantification of growth rate: A key diagnostic in these simulations is the growth rate of the perturbation amplitude at the

density interface. To compute this, we first require the location of the interface. We have augmented our system of equations
with a passive scalar w. Initially wðx;0Þ is set such that its value is +1 (respectively, �1) on the left (respectively, right) of the
interface, such that the zero-crossing of wðx; tÞ identifies the mean location of the density interface at all times. The x-com-
ponent of the velocity is derived as buðx; tÞ ¼ ðcqu � u0q̂Þ=q0. The growth rate of the interface (denoted as ‘‘dA=dt” in the
figures) is computed as û where wðx; tÞ ¼ 0. Clearly, wðx; tÞ ¼ 0 does not coincide exactly at cell centers, so linear interpolation
is used to determine the dA=dt where the zero-crossing of wðx; tÞ occurs. The base state in this example is such that the inci-
dent shock undergoes refraction at the density interface, resulting in a transmitted shock and a reflected shock. The subse-
quent evolution is self-similar in which all the waves (RS = reflected shock, TS = transmitted shock, CD = contact
discontinuity) move with their own constant speed. The initial condition, and the base state after refraction is shown in
Fig. 1(a). As the incident shock traverses the interface, ideally it provides an impulse (in other words, an infinite acceleration
over a zero time duration). This impulse is spread over a very short period of time, as the shock interacts with the smoothed
interface, and hence a very large acceleration occurs over a short time duration. This gets manifested as a large spike in the
perturbed velocity (as seen in plots of growth rate through out the paper). To reiterate, this spike is because of the finite
interaction time between the incident shock and the regularized density interface and is of no real physical consequence.

In Fig. 1(b) and (c), we plot the growth rate of the perturbed interface for the gas dynamic and the MHD case. In these
figures, t ¼ 0 is the time when the incident shock has completely traversed the interface (hence the aforementioned spike
in growth rate is absent in these plots). The growth rate plots in the gas dynamics cases are predictable, with the usual fast
initial growth followed by gradual decaying oscillations about an asymptotic value. The oscillations physically correspond to
the reverberations of secondary waves which eventually decay. This behavior is consistent with the results of Richtmyer and
Yang et al. The growth rate in the MHD cases are similar with those of gas dynamics but only in the very early stages. The
growth rate quickly decays and oscillates about zero. The amplitude of the oscillations are larger for stronger incident shocks
as expected. In Fig. 1 the amplitude (normalized by the initial amplitude) of the density interface for each shock strength are
plotted and for comparison the saturation amplitudes predicted by the incompressible theory of Wheatley et al. [6] are
shown as horizontal lines. Predictably, the numerical simulations agree well with the incompressible theory at low Mach
numbers, with the differences growing with increasing Mach number.

4.1.1. Solution details
In this section, we examine the spatial variation of the perturbed quantities for the M ¼ 1:25 case for both the gas

dynamic and MHD cases. For the gas dynamic case, in Fig. 2(a) and (b), we plot the x-component of the perturbed velocity,
the y-component of the perturbed momentum at time t ¼ 18. The density interface is centered at x ¼ 5 where the peak û is
observed. The signature of the vorticity is seen in the sharp gradient of cqv at the interface [denoted as ‘VS’ in Fig. 2(b)] which
is the driving mechanism of the RM instability. There are oscillations behind the reflected and transmitted shocks which de-
cay away as time progresses – a somewhat obvious behavior because hydrodynamic shocks are stable.
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Fig. 1. (a): Base state initial condition and after refraction. ‘IS’ is the incident shock; ‘RS’ and ‘TS’ are the reflected and transmitted shocks, respectively, after
the interaction of ‘IS’ with the contact discontinuity ‘CD’. (b) Growth rate for M ¼ 1:05;1:25;2:0 shocks for the gas dynamic case. (c) Growth rate for
M ¼ 1:05;1:25;2:0 shocks for the MHD case. (d) Amplitude plots for the MHD case. The horizontal lines are the asymptotic amplitudes predicted by
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For the MHD case, we plot the x-component of the perturbed velocity, the y-component of the perturbed momentum, and
the y- and x-components of the perturbed magnetic field at time t ¼ 18 in Fig. 2(c)–(f). The perturbed field cBy shows evidence
of Alfvén shocks which are also sites of the vortex sheets [denoted as ‘VS’ in Fig. 2(d)]. This bifurcation of the vortex sheet in
going from the gas to the MHD case was observed by Samtaney [5]. This bifurcation is due to the fact that for MHD jump
conditions at contact discontinuities preclude shear whereas shocks in MHD support shear. Because the vorticity is trans-
ported away from the density interface, we expect that the interface, devoid of the driving mechanism, shows a decaying
growth rate. The vorticity, which is a derived quantity given by x ¼ Reðdv̂=dx� ikûÞ, is plotted in Fig. 2(g) for both the
gas and MHD cases. As mentioned earlier, the vorticity in the gas case coincides with the location of the density interface,
whereas in the MHD case the vorticity is transported away by the Alfvén shocks. For both the gas and MHD cases, we have
plotted the density in Fig. 2(h) which shows that the dominant perturbation is at the interface seen as the sharp spikes.

4.2. Reshocked single density interface

A subject of recent interest has been the reshocking of the density interface by reflecting the transmitted shock from the
right boundary [15,16]. Physically, it may be of interest to predict the amplification of the linear growth rate after reshocking.
For this case, the incident shock Mach number is M ¼ 1:25 and the domain is ½xl; xr� ¼ ½�20 : 10� with reflecting boundary
conditions at xr . All other parameters are the same as in the previous sub-section. The growth rate is plotted in Fig. 3. In this
case, we plot the entire time history, not just after the incident shock has traversed the density interface. Hence, we see the
short-lived spike in the growth rate which was discussed in the previous subsection, and which we believe to be of no phys-
ical consequence. It is interesting to note that in this case, after reshock, the shock moves from a region of higher density to
one with a lower density. The reflected wave during the reshocking phase is now a rarefaction fan. The vorticity generated in
during the reshocking phase is of opposite sign and the amplitude reverses phase. The growth rate changes sign after
reshocking and saturates at a value about ten times larger than the first interaction.

4.3. Double density interface

In this section, we present results where instead of a single density interface we have two interfaces. The first density
interface is located at x ¼ 0 while the second one is located at x ¼ xi ¼ 4. The density profile in x is given by:
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where the ± indicates that the second density interface can be in-phase or out of phase with the first one. We show results for
only the in-phase density interface. The base state at t ¼ 0 and t ¼ 15 is shown in Fig. 4(a). The growth rate for each density
interface for the MHD and gas dynamic cases are shown in Figs. 4(b) and (c), respectively. In this in-phase density pertur-
bation the vorticity generated at the second interface is of opposite sign resulting in the phase reversal of the second inter-
face. Before the transmitted shock exits the second interface, the growth of the first interface proceeds as if the second
interface did not exist due to the hyperbolic nature of the equations. Soon after the interaction with the second interface,
a reflected rarefaction reaches the first one and amplifies the growth for the gas dynamic case. Subsequently, there are inter-
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Fig. 6.(a) Growth rate for the shocked single density interface for the MHD cases. (b) G
dynamic case. For each case the solutions at mesh resolutions of 12800, 6400, 3200, 1600 and 800 are plotted.

Table 2
Convergence test for a shocked density interface. The base state has shocks. V

the MHD case. The convergence analysis was performed att¼ 18.VariableMeshL1L1L2^u
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800081366(…)083134(…)0802721(…)
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nal reverberations inside the gas layer which modify the growth rate. In the MHD case, the first interaction is also as pre-
dicted with the growth rate decaying to zero, followed by an increase when the reflected rarefaction from the second inter-
face reaches the first interface. Eventually the growth rate of both interfaces oscillates about zero.

4.4. Convergence test

4.4.1. Smooth density interface
To verify that the solution converges with second-order accuracy, we conduct a test of an impulsively started smooth

density interface. The density profile chosen for this test is
rowth rate for the shocked single density interface for th
ariables suf“xed with (G) are for the gas dynamic case while
qðxÞ ¼ qb þ qa

2
þ qb � qa

2
tanh

x
d

� �
; ð24Þ
where d was chosen to be 0.5 and 1.0 for the gas dynamic and MHD cases, respectively. The impulse is provided at t ¼ 0 by
setting u0 ¼ 0:5 (corresponding to the impulse provided by a M ¼ 1:41 shock). The base state in this case is simply a trans-
lating smooth density interface with no shocks. The domain of investigation is ½xl; xr� ¼ ½�20;20� discretized with a grid of
sizes: 6400, 3200, 1600, 800, and 400. The solution corresponding to the 6400 mesh size is considered as an ‘‘exact” solution
in this convergence analysis. Solutions at other resolutions are compared with this exact solution. Fig. 5(a) shows the growth
rate for the gas dynamic and the MHD case for mesh sizes of 6400 and 400. The MHD and gas dynamic growth rates are
initially different because the interface is spread by different amounts in each case. The normalized amplitude of the inter-
face is plotted for the MHD case in Fig. 5(b). The convergence plots show that the growth rate and amplitude are virtually
indistinguishable for both the finest and the coarsest mesh considered here. The convergence analysis was done at time
t ¼ 10 by computing norms of the difference of the solution at the given resolution with the ‘‘exact” solution. The L1; L1
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and L2 norms for each case are shown in Table 1 along with convergence rates in parenthesis. For this smooth case, the con-
vergence rates exceed two for all the variables examined as we approach the finest mesh resolution.

4.4.2. Shocked single density interface
In this section, we present results from convergence tests for a M ¼ 1:25 incident shock on a single density interface. The

mesh sizes used in this study are: 12800, 6400, 3200, 1600, and 800 points with the finest mesh solution considered as the
‘‘exact” solution. The growth rate at different mesh resolutions are plotted for both the MHD and gas dynamic cases in Fig. 6.
Except for the coarsest mesh considered here, the growth rates show very little difference. A convergence analysis was per-
formed at time t ¼ 18. The results of the convergence test are presented in Table 2. Due to the presence of discontinuities, it
is not surprising that the convergence rate for the L1 and L2 norms are between first and second order.

5. Conclusion

In this paper, we presented an algorithm for solving the linear stability of shock-accelerated density interface such as
those encountered in RM instability simulations. The approach is Eulerian, uses a somewhat traditional upwind approach
and is relatively simple. Convergence studies indicate that the method is spatially second-order accurate for smooth flows,
and between first and second-order accurate for flows with shocks. We presented examples from gas dynamics as well as
MHD for a variety of scenarios: single and double density interfaces, and reshocked single density interface. The diagnostics
presented in this paper were mostly linear growth rates of the perturbations at the density interface. The gas dynamics
growth rates are similar to those computed by earlier researchers. In the MHD case, the growth rate of the instability decays
and oscillates with decreasing amplitude about zero. Furthermore, in MHD, the amplitude of perturbation saturates in agree-
ment with previously published incompressible theory. Much more elaborate and sophisticated diagnostics (e.g. quantifica-
tion of interfacial circulation), and measures of mixing (and its dependence on numerical order of accuracy) have been
undertaken by Latini et al. [16] – such quantification and comparisons with nonlinear simulations are left as a subject of fu-
ture research.

The major appeal of the current approach is that it is quite simple to implement with no special consideration required
about the form of the solution of the underlying temporally evolving base state, and is applicable to both gas dynamics and
MHD. The present approach is easily extensible to flows with chemical reactions, with other time varying or constant accel-
erations of the interface (e.g. Rayleigh–Taylor instability) and for computing the linear stability of the interface in radially
converging geometries (such as those encountered in inertial confinement fusion). Finally, the method, as presented here,
allows for rapid simulation of the linearized behavior of stability problems with one-dimensional, discontinuous and non-
linear base flows and can be applicable to a broader class of linear studies not just those involving interface instabilities.
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